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ABSTRACT

Computer generated forces (CGFs) are autonomous, computercontrolled, entities employed to model hu-
man actors in many simulation-based training and decision support tools. In this work we present a CGF
modeling approach targeted towards modeling aggregate entities representing groups and organizations
such as civilians, armed forces, etc. in military conflict zones. The proposed modeling approach uses
Bayesian networks and rule-based methods that operate on state variables that have been carefully selected
to represent the characterizing properties of groups and organizations. Specifically, state variables are used
to represent the CGF’s knowledge or beliefs about itself, other actors and the environment; Bayesian net-
works are used to model the behavior and action selection mechanism of the CGF; and rules are used to
model actions and their effects on the CGF’s state variables.

Furthermore, to reduce authoring complexity, this work also presents a sampling-based analysis method
capable of analyzing the behavior and real-time performance of a model even prior to embedding the model
in its intended simulation environment.

1 INTRODUCTION

Computer generated forces (CGFs) are autonomous, computercontrolled, entities employed to model hu-
man actors in many simulation-based training, exercise, planning and decision support tools. Often CGFs
are used to represent individual soldiers or teams of soldiers on a virtual battlefield [10]. Such CGF im-
plementations are ideal for tactical simulators where the focus is on short-term scenarios involving only a
handful of actors. However, battlefield simulations targeting the operational or strategic levels of warfare,
where the focus is on long-term scenarios with thousands of actors, typically require other high-level and
aggregate CGF models due to for instance limited computational resources or real-time requirements.

In this work we present a CGF modeling approach targeted towards modeling aggregate entities of hu-
man groups and organizations such as civilians, armed forces, etc. in military conflict zones. The proposed
CGF modeling approach uses a combination of Bayesian networks and rule-based methods that operate on
state variables that have been selected to represent the characteristic properties of aggregate entities repre-
senting groups and organizations. Specifically,

• state variables are used to represent the CGF’s knowledge orbeliefs about itself, other actors and the
environment,

• Bayesian networks are used to model the behavior and action selection mechanism of the CGF,

• rules are used to model actions and their effects on the CGF’sstate variables.
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CGF modeling is a complex task and it is often difficult, even for the modeler, to fully understand the
dynamics of a model. In an attempt to reduce authoring complexity, we have in this work also developed a
sampling-based analysis method that use Monte-Carlo simulation to generate data which can be statistically
summarized and visualized to gain insight into the behaviorand real-time performance of the model even
prior to embedding the model in its intended simulation environment.

Although the modeling approach was originally intended forthe development of CGFs in a real-time
decision support tool for effects-based planning [16], themodeling and analysis methods as well as the
implemented software modules can be adapted and reused in other, similar, simulation applications.

This document has been organized as follows. Related works are presented in Section 2. Our CGF
modeling approach is presented in Section 3. In Section 4 we introduce and provide examples illustrating
our sampling-based analysis method. Finally, conclusionsare presented in Section 5.

2 RELATED WORKS

Alt and Lieberman introduce the Cultural Geography model (CG) which is a modular agent-based modeling
(ABM) [4] approach towards representing human populations’ behavioral response in irregular warfare
operations [1, 2]. The purpose of the model is to gaininsight into complex social systems by means of
modeling and simulation ultimately resulting in improved course of action analysis (COA) tools and training
simulators. Theories of narrative identity and planned behavior are used to model the cognition of each
agent. Specifically, the CG model employs Bayesian networks(BNs) [9] to encode agent beliefs, values and
interests. When an event or action occurs in the simulation,information about the event is automatically
passed to agents within the vicinity of the event. Furthermore, homophily social network theory is used
to propagate event information to agents outside the vicinity such that similar agents, using a metric of
social distance, are more likely to communicate event information compared to those that are less similar.
Given the event, each agent infers from the BNs its stance on aparticular issue of interest (e.g., ”Is security
adequate?” or ”Will the upcoming elections be legitimate?”). Using the model, a decision maker is able to
execute many alternative COAs and select the one COA that resulted in the most satisfactory outcome with
respect to selected issues of interest.

Sokolowski and Banks model the complex social behavior of civil uprising and insurgency using a
system dynamics (SD) [11] approach in [17]. The purpose of the model is to study the British counter-
insurgency in Ireland (1916, 1919-1921) and to better understand which factors that united the Irish in-
surgency and self-rule by means ofwhat-if simulation. A narrative is used as an initial input to generate
a causal loop diagram (CLD) describing the relevant variables and how these influence each other in the
model. The CLD is then converted into a stocks-and-flow diagram (SFD) and a set of ordinary differential
equations (ODEs) that govern the dynamics of the social system. The model includes a system of variables
and equations describing the main actors: the general population, the insurgents (potential and recruited),
and the British troops. Furthermore, the model uses variables modeling Irish satisfaction with British rule,
coercive acts and insurgent incidents to highlight a few. The model was validated and calibrated using his-
torical data. Yet another SD model of complex social behavior is presented by Grynkewich and Reifel in
[12].

The MASON RebeLand model [7, 5] simulates the stability of a polity (i.e. state) when put under
varying degrees of political stress. The purpose of the model is to study: 1) how a polity responds to
various levels of societal stress and governmental performance; and 2) how insurgency, political instability
emerges in a polity over time. The model consists of a combination of meso-scale models (state, city, general
population, rebel groups) and micro-scale models (rebels,military units and police) where each model is
implemented as one agent in the simulation. Issues (economical, environmental or security) are created and
added to the simulation by RebeLand’s socio-natural environment component. The RebeLand simulation
was extended in [6] to include multiple states to study the dynamics of refugee flows, transnational conflict

The Modeling and Analysis of Computer Generated Forces 
Representing Groups and Organizations in Military Conflict Zones  

12 - 2 STO-MP-MSG-094 

 
 

 
 



and crime, and natural hazards across borders.
REsCape [3] is an agent-based simulation framework that canbe used as an exploratory tool to study the

relationships between natural resources, ethnicity and civil war. The simulation is driven by a government
that collects revenue from natural resources and applies different spending strategies which in turn affects
the government support among the population. The population consists of peasant agents who may choose
to follow the reigning government or to join a rebel group which employs a better spending strategy given
the agent’s self-interest. Conflicts occur if the rebel leaders and the government leaders attempt to control
the same location on the grid-based map.

Irreducible Semi-Autonomous Adaptive Combat (ISAAC) and Enhanced ISAAC Neural Simulation
Tool (EINSTein) are two simulation frameworks that specialize on studying emergent self-organizing be-
havior in warfare [14, 15]. Unlike the traditionally usedLanchester Equation(LE) method of studying
warfare, the EINSTein framework employs an agent-based approach to facilitate spatial variation and spe-
cialized behaviors in the simulation. EINSTein is capable of capturing complex dynamics of warfare where
the combatants are structured in teams that are capable of reacting and adapting to changing conditions in
the environment.

3 MODELING APPROACH

3.1 State variables

State variables are used here to represent the CGF’s knowledge and beliefs about itself, other actors and
the environment. We have separated the state variables intosets representing an actor’s internal state and
its relationships to others. Note that in our CGF model all actors known to the CGF, including itself, are
represented using separate sets of the abovementioned state variables. The purpose of the state variables is to
provide a common knowledge representation that can be used when developing CGF behaviors and actions
as described in Section 3.2 and Section 3.3. The state variables presented in this section were identified
using subject matter experts and chosen to represent a wide range of characteristics among groups and
organizations in military conflict zones.

The internal state variables, which originates from previous work presented in [16], are represented here
by a vector,I, that contains 16 discrete state variables. The name, label(A-P) and a brief (non-exhaustive)
qualitative interpretation for each variable value is presented in Table 1. The variables in the internal state
vector is limited to four integer values [0,. . . ,3]. This design decision was made to keep the knowledge
space of the CGF relatively small which ensures that behavior and action modeling remains pragmatic and
not too time-consuming. Also, such limitation significantly reduces the complexity in terms of search space
when embedding CGF models in real-time planning tools such as the one presented in [16].

Similarly to the internal state of an actor, its relationships to others are encoded in a relationship state
vector,R, as illustrated in Table 2. Each row in the table represents the relationship towards another actor.
Note that, unlikeI, which is fixed, the number of variables inR varies with the number of other actors,
N , known to the CGF. The relationship variables have four integer values [0,. . . ,3] which are interpreted as
enemy, suspicious, neutralandfriendly respectively.

Given the state variables described above we can now introduce the notation used in the remainder of
this paper. An actor,ai, known to the CGF is represented byωi = {Iij ,Rin} wherej = {A,B, . . . , P} and
n = {1, 2, . . . , N}. That is,Iij represents actorai’s internal state variablej andRin represents actorai’s
relationship to actoran. Given that the CGF knows aboutN actors (including itself) its complete knowledge
space isΩ = {ω1, . . . ,ωN}.

Let’s also introduce the concept of roles that is used here togeneralize action and behavior modeling:
the initiator role is assigned to the actor that initiates an action; thetarget role is assigned to the actor who’s
state variables are directly affected by theinitiator ’s action; and thebystanderrole is assigned to all other
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Table 1: Internal state variables.

Interpretation of state variable values
State variable 0 1 2 3

Weapon power A Less than 0.1
brigade

0.25 brigade 1 brigade 4 brigades

Living conditions B Suffering,
scarce re-
sources, being
killed by others

Suffering,
scarce re-
sources

Not suffer-
ing, limited
resources

Not suffer-
ing, abundant
resources

Stance C Submissive Defensive Defiant Violent
Sympathizers D No supporters Supported

by marginal
others

Supported
by the local
majority

Supported
by the wider
majority

Economy E < 1000 times
GNP/capita

1000 − 10000

times
GNP/capita

10000 −

100000 times
GNP/capita

> 100000

times
GNP/capita

Stability F Quick reduc-
tion in group
size

Slow reduction
in group size

Slow increase
in group size

Quick increase
in group size

Geographical domi-
nance

G At risk in the
area

Can move and
talk freely

Can impose
restrictions on
others

Can dominate
others

Infrastructure H Man-to-man,
word-of-mouth

Terrain vehi-
cles, leaflets

Trucks, cell-
phones

Complete, In-
ternet

Propaganda channels I Limited reach
outside pri-
mary group

Reaches local
communities

Reaches com-
munities of
similar identity

Reaches all
types of com-
munities

Social network J No ties Ties to uncom-
mitted

Ties to com-
mitted

Ties to highly
committed

Reputation K Despised Light-weight Recognized Highly re-
garded

Dissatisfaction L No grievance Would like to
see responsible
for grievance
fail

Prepared to use
violence in act
of revenge

Prepared to
sacrifice life in
act of revenge

Group feeling M Power struggle Friction Harmony Cohesive
Ideological conviction N None Little Medium High
Goal orientation O None Preserving Advance Vision
Moral stance P Indiscriminate

use of violence
Low bar-
rier/concern
for out-groups

Restricted but
pragmatic use
of violence

Violence only
as a last resort
in self-defence

Table 2: Relationship state variables.

Interpretation of state variable values
State variable 0 1 2 3

Relationship1 R1 Enemy Suspicious Neutral Friendly
...

...
...

...
...

...

Relationshipn RN Enemy Suspicious Neutral Friendly

actors, other than theinitiator andtarget, that may be affected by the action. Henceforth, when referring to
the state variables of theinitiator, targetandbystanderactors the subscriptsi, t andb are used respectively.
For instance,ItA refers to the internal state variableA of targetactorat.
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3.2 Modeling behaviors

Using the state variables we are now ready to introduce our behavior modeling method. The behavior of a
CGF is in essence an action selection strategy implemented as a function that use as input the CGF’s state
variables,Ω, and generates as output the action,α, to execute as shown in Equation 1.

α = f(Ω) (1)

In this work a Bayesian network (BN) [9] approach has been adopted to modelf using either subject
matter expert knowledge in cases where too little or no data are available or using machine learning algo-
rithms in cases where large data sets representing the historic behavior of an actor are available. We have
primarily chosen to use BNs due to their:

• Capability to graphically represent CGF behavior using directed acyclic graphs (DAGs) which ulti-
mately improves the general understanding of the model,

• Capability to perform inference, or select actions, even inthe presence of missing or uncertain infor-
mation,

• Modularity and re-usability.

The Bayes rule defined in Equation 2 represents the core of anyBayesian modeling approach [9]. Using
the Bayes rule a probability value, theposterior, is calculated for each action available to the actor. Typically,
the action with the maximumposterior is selected by the actor. This is however not always the case as will
be discussed below.

p(αn|Ω) =
p(αn)× p(Ω|αn)

∑M
m=1 p(αm)× p(Ω|αm)

(2)

From the Bayes rule it is clear that theposterior, p(αn|Ω), of action,αn, is calculated using theprior,
p(αn), and likelihood,p(Ω|αn), functions. The denominator, or theevidence, is a normalizing factor that
spans all actions,M . That is, using the Bayesian approach it is ultimately theprior andlikelihood functions
that the modeler manipulates or that the learning algorithmestimates to represent desired actor behaviors.
The problem with Bayes rule is that one rarely can find enough data to model the likelihood function due to,
in our case, the high dimensional state variable vectorΩ. This is where BNs comes to rescue by introducing
conditional independence between variables, hence, simplifying the likelihood estimation process.

At its simplest a BN is identical to the naı̈ve Bayes classifier in which all variables inΩ are assumed to
be conditionally independent of each other. Using this assumption, Bayes rule can be reduced to Equation
3, whereK is the dimensionality ofΩ. The DAG of an example naı̈ve Bayes classifier BN is presentedin
Figure 1a.

p(αn|Ω) =
p(αn)×

∏K
k=1 p(Ωk|αn)

∑M
m=1 p(αm)×

∏K
k=1 p(Ωk|αm)

(3)

However, clearly not all variables inΩ are conditionally independent of each other. As an example,an
actor,ai’s, dissatisfaction,IiL, to another actor,at, is conditionally dependent on its perceived relationship,
Rit, to at. A modified network incorporating this conditional dependency is presented in Figure 1b. Links
between any two variables in the DAG indicates that there exists a conditional dependency between them.
Many inference algorithms that are capable of calculating the probabilities at arbitrary nodes in arbitrary
structured BNs have been discussed in the literature [13]. In this study we have chosen to use the algorithm
presented in [8]. It is important to know that the time required to infer probabilities varies depending on the
structure of the BN as well as the amount of evidence (or knowledge) that are known prior to inference.
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(a) Naı̈ve Bayes classifier.

action

Rit

Relationship 

to target

IiE

Economy

IiA

Weapon 

power

IiL

Dissatisfaction

...

(b) BN classifier whereIiL is conditionally de-
pendent onRit. All other state variables are
assumed to be independent of each other.

Figure 1: Examples of directed acyclic graphs representing Bayesian networks.

Using the probabilities inferred at theactionnode of the BN it is possible to select an action in several
ways. Which action selection method to use is ultimately themodelers choice. This CGF model supports
the following action selection methods:

• Maximum a posterior (MAP),

• Random draw.

The MAP approach, which is defined in Equation 4, simply selects the action with the maximumposte-
rior . The random draw approach selects an action by randomly sampling theposteriorvalues with respect
to their proportions.

α = arg max
n∈{1,...,M}

p(αn|Ω) (4)

3.3 Modeling actions

Actions are the means by which a CGF may alter its state,Ω. An action is represented here by a set of rules
each consisting of a condition, theif -part, and a list of effects, thethen-part, such that if the condition is
true then the list of effects will execute ultimately resulting in state variable changes. On the other hand, if
the condition isfalsethen none of the effects will execute.

In this work subject matter experts have developed hundredsof rules modeling the following actions:
attack, neutralize, negotiate, support, protect, andnothing. In addition to the rules governing the effects
of actions, subject matter experts have developed global rules modeling phenomena such as the Stockholm
syndrome and radicalization. Global rules are also used to introduce constraints that filters out invalid or
unwanted state variable values.

The conditions, or theif -parts, of the rules are described using Boolean expressions. The effects, or the
then-parts, of the rules are described using a function notationwhere theset, inc anddecfunctions are used
to set, increment and decrement specific state variable values. For instance,set(ItA, 1) assigns the value 1
to the thetarget actor’s,at, internal state variable,A. Similarly, inc(ItA, 1) anddec(ItA, 1) increases and
reduces the same value by 1 respectively. Table 3 illustrates the notation using an example rule that partially
models the effects of theprotect-action.
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Table 3: Example rule partially modeling the protect action .

If Then Description
ItA > 0 ∧ ItC > 2 ∧ ItD > 1 ∧

ItG > 1 ∧ ItI > 0 ∧ ItJ > 1 ∧

ItK > 1 ∧ ItL > 1 ∧ ItN > 0 ∧

ItO > 1

set(ItB ,2)
set(ItG,1)

Update living conditions and geographical
dominance of target.

4 SAMPLING BASED ANALYSIS

To reduce the authoring complexity of our CGF modeling approach we have developed a sampling based
analysis method that can be utilized to gain insight into theaction selection and execution mechanisms of the
CGF as well as its real-time performance. The analysis method is useful not only during CGF prototyping
and development but potentially also for test and verification purposes.

The core of our analysis method consists of a Monte-Carlo based simulation environment where CGF
implementations, or prototypes, can be embedded and executed. The simulation environment records the
dynamics of the embedded CGF’s state variables as well as allthe actions that the CGF selected and exe-
cuted. Following the Monte-Carlo method any input variables required by the CGF, to for instance invoke
the action selection mechanism, are randomly sampled usingpre-determined probability distributions.

The pseudo-code of our simulation environment is presentedin Algorithm 1. The algorithm basically
consists of two loops where the inner loop randomly samples the target andbystanderactors to be used
as input to the CGF’s action selection algorithm. Note that there is no need to sample theinitiator role as
it is always played by the CGF itself. When an action is executed in the inner-loop the state variables are
updated, following the rules of the selected action, and theresulting state variables are copied and stored
in a list for processing by the outer-loop. The outer loop creates a probability distribution using the list
generated by the inner-loop. The probability distributionis randomly sampled to create a new state variable
vector to be used in the next simulation cycle. This process is repeated for all simulation cycles.

Given the output of the MC-based simulation environment we can separate the analysis into three parts:
1) action selection analysis, 2) state variable analysis, and 3) execution time analysis. The action selection
analysis is relevant to gain insight into the behavior or action selection mechanism of a CGF. Example
plots illustrating the action selection behavior of a prototype CGF in the presence of six other fictitious
actors (BFOR, Compett, Nottovio, Popett, PoptoandPoptre) are provided in Figure 2. In Figure 2a the
probabilities of selecting an action for a given target is presented over the entire simulation run. In Figure
2b and Figure 2c the probabilities of selecting actions are presented at a fixed point in time comparing three
different knowledge levels (0%, 50% and 100%). The knowledge levels are used here to gain insight into
how the action selection mechanism behaves in the presence of unknown information. When the knowledge
level is at 0% all nodes (i.e. state variables) in the BN are unknown, at 50% values has been randomly added
to 50% of the nodes and at 100% values has been added to all nodes. Figure 2b represents the CGF’s action
selection behavior for all actions applied to alltargets. More detailed insights for a specific action, in this
case theattackaction, are provided in Figure 2c.
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Algorithm 1 Monte-Carlo simulation algorithm for data generation.

Require: Initial state variables,Ω, simulation ticks,T , and Monte-Carlo iterations per simulation tick,K.

SimulationData = empty list of states
AddΩ to SimulationData

t = 0
while t < T do

MonteCarloData = empty list of states
k = 0
while k < K do

Ωt = state at the end of theSimulationData list
at = randomly sample target actor
ab = randomly sample bystander actors
α = select action by invoking theai’s behavior module givenΩt, at andab
Ωk = calculate new state by executingα givenΩt, at andab
Add Ωk to MonteCarloData

k = k + 1
end while
Ωt+1 = randomly sampleMonteCarloData

Add Ωt+1 to SimulationData

t = t + 1
end while
return SimulationData
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(a) The CGF’s action selection probabilities at time interval
0-100 for a given target.
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(b) The CGF’s action selection probabilities at time=0.
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(c) The CGF’s action selection probabilities for a given ac-
tion at time=0.

Figure 2: CGF action selection probability plots. Probabil ities can be plotted over time (Figure 2a) or at specific
points in time (Figure 2b and Figure 2c). In Figure 2b and Figu re 2c results are shown for CGF
knowledge levels 0%, 50% and 100%.
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State variable analysis is relevant when developing actions but also to describe the conditions by which
an action was selected by the CGF. In Figure 3 plots are provided to illustrate the CGF’s knowledge of
another actor’s internal state and relationship variablesover time. Line plots are used to gain insight into
how state variable values changes throughout the simulation run. Probability density plots, which are created
using non-parametric kernel density estimation [9], are provided here to complement the line plot to identify
variation in state variable values.
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(b) Internal state probability density.
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(d) Relationship state probability density.

Figure 3: Line and probability density plots illustrating t he evolution of internal state and relationship variable
values over time for a given actor.

Execution time analysis is useful to identify potential issues with respect to real-time requirements of
the CGF. In Figure 4 box-plots are used to visualize the execution time of action selection as well as action
execution. As mentioned above, the execution time depends on structure of the BN as well as the knowledge
level of the CGF. To emphasize the impact of knowledge levelswith respect to execution time, separate box-
plots were generated for each of the previously defined knowledge levels.
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Figure 4: Box-plots visualizing the execution time require d by the CGF to select and execute actions. Results
are shown for CGF knowledge levels 0%, 50% and 100%.

5 CONCLUSIONS

In this paper we have introduced a CGF modeling approach targeting the aggregate representation of groups
and organizations in military conflict zones. Our approach is based on state variables, which have been
identified by subject matter experts, to represent the CGF’sknowledge and beliefs with respect to the char-
acteristics of groups and organizations. Using the state variables a Bayesian network approach was proposed
to model the behavior, or action selection mechanism, of theCGF and a rule-based approach was proposed
to model the effects of actions.

Furthermore, given the complexity of CGF modeling, we have introduced a sampling based analysis
method used in our work to gain insight into the behavior of CGF implementations even prior to embedding
them in their intended simulation environment.

ACKNOWLEDGMENT

This work was supported by the FOI research project “Real-Time Simulation Supporting Effects-Based
Planning”, which is funded by the R&D programme of the Swedish Armed Forces.

REFERENCES

[1] Jonathan K. Alt, Leroy A. Jackson, David Hudak, and Stephen Lieberman. The cultural geography
model: Evaluating the impact of tactical operational outcomes on a civilian population in an irreg-
ular warfare environment.Journal of Defense Modeling and Simulation (Special Issue on Counter-
Insurgency), 2010.

[2] Jonathan K. Alt and Stephen Lieberman. The cultural geography model: An agent based modeling
framework for analysis of the impact of culture in irregularwarfare. International Conference on
Computational Cultural Dynamics, 2011.

[3] Ravi Bhavnani, Dan Miodownik, and Jonas Nart. Rescape: an agent-based framework for modeling
resources, ethnicity, and conflict.Journal of Artificial Societies and Social Simulation, 11(2):7, 2008.

The Modeling and Analysis of Computer Generated Forces 
Representing Groups and Organizations in Military Conflict Zones 

STO-MP-MSG-094 12 - 11 

 
 

 
 



[4] Eric Bonabeau. Agent-Based Modeling: Methods and Techniques for Simulating Human Systems.
Proceedings of the National Academy of Sciences of the United States of America, 99(10):7280–7287,
2002.

[5] Claudio Cioffi-Revilla. Simplicity and reality in computational modeling of politics.Computational
and Mathematical Organization Theory, 15:26–46, 2009. 10.1007/s10588-008-9042-2.

[6] Claudio Cioffi-Revilla and Mark Rouleau. MASON AfriLand: a regional multi-country agent-based
model with cultural and environmental dynamics.Proceedings of the Human Behavior-Computational
Modeling and Interoperability Conference (HB-CMI-09), 2009.

[7] Claudio Cioffi-Revilla and Mark Rouleau. MASON RebeLand: an Agent-Based model of politics,
environment, and insurgency.International Studies Review, 12(1):31–52, 2010.

[8] Fabio Gagliardi Cozman. Generalizing variable elimination in bayesian networks. InIn Workshop on
Probabilistic Reasoning in Artificial Intelligence, pages 27–32, 2000.

[9] Richard O. Duda, Peter E. Hart, and David G. Stork.Pattern Classification (2nd Edition). Wiley-
Interscience, 2000.

[10] Rick Evertsz, Matteo Pedrotti, Paolo Busetta, Hasan Acar, and Frank E. Ritter. Populating VBS2 with
realistic virtual actors.Proceedings of the 18th Conference on Behavior Representation in Modeling
and Simulation BRIMS, pages 1–8, 2009.

[11] Jay Forrester. Industrial Dynamics: A major breakthrough for decision makers.Harvards business
review, 36(4):37–66, 1958.

[12] Alex Grynkewich and Chris Reifel. Modeling Jihad: A System Dynamics Model of the Salafist Group
for Preaching and Combat Financial Subsytem.Strategic Insights, 5(8), 2006.

[13] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide.International
Journal of Approximate Reasoning, 15:225–263, 1996.

[14] Andrew Ilachinski. Irreducible semi-autonomous adaptive combat (ISAAC): An artificial life approach
to land combat.Military Operations Research, 5:29–46, 1997.

[15] Andrew Ilachinski. Artificial War: Multiagent-Based Simulation of Combat. World Scientific Press,
2004.

[16] Farshad Moradi and Johan Schubert. Modelling a simulation-based decision support system for effects-
based planning.Proceedings of the NATO Symposium on Use of M&S in: Support toOperations,
Irregular Warfare, Defence Against Terrorism and Coalition Tactical Force Integration (MSG-069),
(11):1–14, 2009.

[17] John A. Sokolowski and Catherine M. Banks. Modeling complex social behavior: A system dynamics
approach.Proceedings of the 19th Conference on Behavior Representation in Modeling and Simula-
tion, March 2010.

The Modeling and Analysis of Computer Generated Forces 
Representing Groups and Organizations in Military Conflict Zones  

12 - 12 STO-MP-MSG-094 

 
 

 
 




