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ABSTRACT

Computer generated forces (CGFs) are autonomous, compatgrolled, entities employed to model hu-
man actors in many simulation-based training and decisigopsrt tools. In this work we present a CGF
modeling approach targeted towards modeling aggregat@ientrepresenting groups and organizations
such as civilians, armed forces, etc. in military conflich@s. The proposed modeling approach uses
Bayesian networks and rule-based methods that operateatensriables that have been carefully selected
to represent the characterizing properties of groups arghaizations. Specifically, state variables are used
to represent the CGF’s knowledge or beliefs about itselfepfictors and the environment; Bayesian net-
works are used to model the behavior and action selectiorharésm of the CGF; and rules are used to
model actions and their effects on the CGF’s state variables

Furthermore, to reduce authoring complexity, this worloglsesents a sampling-based analysis method
capable of analyzing the behavior and real-time perfornganica model even prior to embedding the model
in its intended simulation environment.

1 INTRODUCTION

Computer generated forces (CGFs) are autonomous, congartolled, entities employed to model hu-
man actors in many simulation-based training, exercismrphg and decision support tools. Often CGFs
are used to represent individual soldiers or teams of ssldia a virtual battlefield [10]. Such CGF im-
plementations are ideal for tactical simulators where toei$ is on short-term scenarios involving only a
handful of actors. However, battlefield simulations targgethe operational or strategic levels of warfare,
where the focus is on long-term scenarios with thousandstofs typically require other high-level and
aggregate CGF models due to for instance limited compuiatieesources or real-time requirements.

In this work we present a CGF modeling approach targetedrtsvaodeling aggregate entities of hu-
man groups and organizations such as civilians, armeddpete. in military conflict zones. The proposed
CGF modeling approach uses a combination of Bayesian nletveard rule-based methods that operate on
state variables that have been selected to represent thectdastic properties of aggregate entities repre-
senting groups and organizations. Specifically,

e state variables are used to represent the CGF’s knowledggiefs about itself, other actors and the
environment,

e Bayesian networks are used to model the behavior and adlecti®n mechanism of the CGF,

e rules are used to model actions and their effects on the C&dtis variables.
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CGF modeling is a complex task and it is often difficult, eventhe modeler, to fully understand the
dynamics of a model. In an attempt to reduce authoring caxitpleve have in this work also developed a
sampling-based analysis method that use Monte-Carlo ationlto generate data which can be statistically
summarized and visualized to gain insight into the behaaiat real-time performance of the model even
prior to embedding the model in its intended simulation emvinent.

Although the modeling approach was originally intendedtfa development of CGFs in a real-time
decision support tool for effects-based planning [16], tiredeling and analysis methods as well as the
implemented software modules can be adapted and reusdukin similar, simulation applications.

This document has been organized as follows. Related woekprasented in Section 2. Our CGF
modeling approach is presented in Section 3. In Section sAtweduce and provide examples illustrating
our sampling-based analysis method. Finally, conclustmagresented in Section 5.

2 RELATED WORKS

Alt and Lieberman introduce the Cultural Geography modé&)@hich is a modular agent-based modeling
(ABM) [4] approach towards representing human populatidrehavioral response in irregular warfare
operations [1, 2]. The purpose of the model is to gasight into complex social systems by means of
modeling and simulation ultimately resulting in improvexlicse of action analysis (COA) tools and training
simulators. Theories of narrative identity and plannedab@lr are used to model the cognition of each
agent. Specifically, the CG model employs Bayesian netw@Kks) [9] to encode agent beliefs, values and
interests. When an event or action occurs in the simulatidormation about the event is automatically
passed to agents within the vicinity of the event. Furtheenbomophily social network theory is used
to propagate event information to agents outside the wcisuich that similar agents, using a metric of
social distance, are more likely to communicate event mfdion compared to those that are less similar.
Given the event, each agent infers from the BNs its stancepamtizular issue of interest (e.qg., "Is security
adequate?” or "Will the upcoming elections be legitimaje®Jsing the model, a decision maker is able to
execute many alternative COAs and select the one COA thaltedsn the most satisfactory outcome with
respect to selected issues of interest.

Sokolowski and Banks model the complex social behavior wif aprising and insurgency using a
system dynamics (SD) [11] approach in [17]. The purpose efrtiodel is to study the British counter-
insurgency in Ireland (1916, 1919-1921) and to better wstdad which factors that united the Irish in-
surgency and self-rule by meanswhat-if simulation. A narrative is used as an initial input to geteera
a causal loop diagram (CLD) describing the relevant vagglaind how these influence each other in the
model. The CLD is then converted into a stocks-and-flow diag(SFD) and a set of ordinary differential
equations (ODESs) that govern the dynamics of the sociaésysthe model includes a system of variables
and equations describing the main actors: the general aiqu) the insurgents (potential and recruited),
and the British troops. Furthermore, the model uses vasaivlodeling Irish satisfaction with British rule,
coercive acts and insurgent incidents to highlight a fewe fifodel was validated and calibrated using his-
torical data. Yet another SD model of complex social behaigigpresented by Grynkewich and Reifel in
[12].

The MASON RebelLand model [7, 5] simulates the stability ofddity (i.e. state) when put under
varying degrees of political stress. The purpose of the misd® study: 1) how a polity responds to
various levels of societal stress and governmental pedooe; and 2) how insurgency, political instability
emerges in a polity over time. The model consists of a contibim@f meso-scale models (state, city, general
population, rebel groups) and micro-scale models (releiétary units and police) where each model is
implemented as one agent in the simulation. Issues (ecaabrenvironmental or security) are created and
added to the simulation by RebelLand’s socio-natural enwent component. The RebeLand simulation
was extended in [6] to include multiple states to study theadyics of refugee flows, transnational conflict
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and crime, and natural hazards across borders.

REsCape [3] is an agent-based simulation framework thabearsed as an exploratory tool to study the
relationships between natural resources, ethnicity aritivear. The simulation is driven by a government
that collects revenue from natural resources and applfeseatit spending strategies which in turn affects
the government support among the population. The populabosists of peasant agents who may choose
to follow the reigning government or to join a rebel group gfhemploys a better spending strategy given
the agent’s self-interest. Conflicts occur if the rebel &zadand the government leaders attempt to control
the same location on the grid-based map.

Irreducible Semi-Autonomous Adaptive Combat (ISAAC) anth&nced ISAAC Neural Simulation
Tool (EINSTein) are two simulation frameworks that spez&lon studying emergent self-organizing be-
havior in warfare [14, 15]. Unlike the traditionally usé@nchester EquatiofLE) method of studying
warfare, the EINSTein framework employs an agent-basedoapp to facilitate spatial variation and spe-
cialized behaviors in the simulation. EINSTein is capalfleapturing complex dynamics of warfare where
the combatants are structured in teams that are capablaating and adapting to changing conditions in
the environment.

3 MODELING APPROACH

3.1 State variables

State variables are used here to represent the CGF's kngeviead beliefs about itself, other actors and
the environment. We have separated the state variablesetéaepresenting an actor’s internal state and
its relationships to others. Note that in our CGF model aibrecknown to the CGF, including itself, are
represented using separate sets of the abovementionedatables. The purpose of the state variables is to
provide a common knowledge representation that can be used developing CGF behaviors and actions
as described in Section 3.2 and Section 3.3. The state lesigbesented in this section were identified
using subject matter experts and chosen to represent a wafigg of characteristics among groups and
organizations in military conflict zones.

The internal state variables, which originates from presiwork presented in [16], are represented here
by a vector]I, that contains 16 discrete state variables. The name, (AH@) and a brief (non-exhaustive)
qualitative interpretation for each variable value is preged in Table 1. The variables in the internal state
vector is limited to four integer values [0,...,3]. This @gsdecision was made to keep the knowledge
space of the CGF relatively small which ensures that behavid action modeling remains pragmatic and
not too time-consuming. Also, such limitation significgméduces the complexity in terms of search space
when embedding CGF models in real-time planning tools ssdhe&one presented in [16].

Similarly to the internal state of an actor, its relatiopshio others are encoded in a relationship state
vector,R, as illustrated in Table 2. Each row in the table represdmselationship towards another actor.
Note that, unlikel, which is fixed, the number of variables It varies with the number of other actors,
N, known to the CGF. The relationship variables have fourgeteralues [O,. . .,3] which are interpreted as
enemysuspiciousneutralandfriendly respectively.

Given the state variables described above we can now irdeothe notation used in the remainder of
this paper. An actog;, known to the CGF is represented by = {I;;, R;, } wherej = {A, B, ..., P} and

n = {1,2,...,N}. Thatis,I;; represents actat;’s internal state variabl¢ andR;,, represents actar;’s
relationship to actod,,. Given that the CGF knows aboit actors (including itself) its complete knowledge
space i€2 = {w1,...,wN}.

Let’s also introduce the concept of roles that is used hegeteralize action and behavior modeling:
theinitiator role is assigned to the actor that initiates an actiontdhgetrole is assigned to the actor who's
state variables are directly affected by thiiator’s action; and thdystanderrole is assigned to all other
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Table 1: Internal state variables.

Interpretation of state variable values
State variable 0 | 1 | 2 | 3
Weapon power A | Less than 0.1 0.25 brigade 1 brigade 4 brigades
brigade
Living conditions B | Suffering, Suffering, Not suffer- Not suffer-
scarce re- scarce re- ing, limited ing, abundant
sources, being sources resources resources
killed by others
Stance C | Submissive Defensive Defiant Violent
Sympathizers D | No supporters Supported Supported Supported
by marginal by the local by the wider
others majority majority
Economy E | < 1000 times 1000 — 10000 10000 - > 100000
GNP/capita times 100000 times times
GNP/capita GNP/capita GNP/capita
Stability F | Quick reduc- Slow reduction Slow increase Quick increase
tion in group ingroup size in group size in group size
size
Geographical domi-{ G | At risk in the Can move and Can impose Can dominate
nance area talk freely restrictions on others
others
Infrastructure H | Man-to-man, Terrain  vehi- Trucks, cell- Complete, In-
word-of-mouth cles, leaflets phones ternet
Propaganda channels | | | Limited reach Reaches local Reaches com- Reaches all
outside pri- communities munities of types of com-
mary group similar identity munities
Social network J | Noties Ties to uncom- Ties to com- Ties to highly
mitted mitted committed
Reputation K | Despised Light-weight Recognized Highly re-
garded
Dissatisfaction L | No grievance Would like to Prepared to use Prepared to
see responsible violence in act sacrifice life in
for grievance of revenge act of revenge
fail
Group feeling M | Power struggle  Friction Harmony Cohesive
Ideological conviction | N | None Little Medium High
Goal orientation O | None Preserving Advance Vision
Moral stance P | Indiscriminate Low bar- Restricted but Violence only
use of violence rier/concern pragmatic use as a last resor
for out-groups  of violence in self-defence

Table 2: Relationship state variables.

Interpretation of state variable values
State variable 0 | 1 2 3
Relationship R: | Enemy Suspicious Neutral Friendly
Relationship Ry | Enemy Suspicious Neutral Friendly

actors, other than theitiator andtarget that may be affected by the action. Henceforth, when riefgto
the state variables of thritiator, targetandbystanderactors the subscripts¢ andb are used respectively.
For instance]; 4 refers to the internal state variabfeof targetactora,.
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3.2 Modeling behaviors

Using the state variables we are now ready to introduce dueMder modeling method. The behavior of a
CGF is in essence an action selection strategy implemestedianction that use as input the CGF’s state
variables (2, and generates as output the actionto execute as shown in Equation 1.

a= f(Q) 1)

In this work a Bayesian network (BN) [9] approach has beerptatbto modelf using either subject
matter expert knowledge in cases where too little or no dagaeailable or using machine learning algo-
rithms in cases where large data sets representing theitiibhavior of an actor are available. We have
primarily chosen to use BNs due to their:

e Capability to graphically represent CGF behavior usingadid acyclic graphs (DAGs) which ulti-
mately improves the general understanding of the model,

e Capability to perform inference, or select actions, evethépresence of missing or uncertain infor-
mation,

e Modularity and re-usability.

The Bayes rule defined in Equation 2 represents the core daygsian modeling approach [9]. Using
the Bayes rule a probability value, thesterior, is calculated for each action available to the actor. Talpic
the action with the maximurposterioris selected by the actor. This is however not always the cagdlla
be discussed below.

plan|) = 2] X p(lan) @
Zm:l p(am) X p(Q‘am>

From the Bayes rule it is clear that thesterior, p(«,|Q2), of action,«,,, is calculated using therior,
p(ay), and likelihood,p(2|ay, ), functions. The denominator, or tlewidenceis a normalizing factor that
spans all actions)/. That is, using the Bayesian approach it is ultimatelyghier andlikelihood functions
that the modeler manipulates or that the learning algorigélstimates to represent desired actor behaviors.
The problem with Bayes rule is that one rarely can find enowga th model the likelihood function due to,
in our case, the high dimensional state variable ve@tor his is where BNs comes to rescue by introducing
conditional independence between variables, hence, i§jingl the likelihood estimation process.

At its simplest a BN is identical to the naive Bayes classifiavhich all variables irf2 are assumed to
be conditionally independent of each other. Using this mgsion, Bayes rule can be reduced to Equation
3, wherekK is the dimensionality of2. The DAG of an example naive Bayes classifier BN is presented
Figure la.

- plan) X H?:l p(Q]an)
p(an|ﬂ) = =M K
> om=1 Plam) X [T=1 p(Qklam)
However, clearly not all variables € are conditionally independent of each other. As an exanaple,

actor,a;'s, dissatisfaction];,, to another actow,, is conditionally dependent on its perceived relationship
R, to a;. A modified network incorporating this conditional depencleis presented in Figure 1b. Links
between any two variables in the DAG indicates that therstex conditional dependency between them.
Many inference algorithms that are capable of calculativefrobabilities at arbitrary nodes in arbitrary
structured BNs have been discussed in the literature [h3hi$ study we have chosen to use the algorithm
presented in [8]. It is important to know that the time regdito infer probabilities varies depending on the
structure of the BN as well as the amount of evidence (or kadge) that are known prior to inference.

®3)
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Relationship
to target

Relationship ~ Economy  Weapon  pyieqpicastion
to target power Dissatisfaction
(a) Naive Bayes classifier. (b) BN classifier wherel;;, is conditionally de-
pendent onRk;;. All other state variables are
assumed to be independent of each other.
Figure 1: Examples of directed acyclic graphs representing Bayesian networks.

Using the probabilities inferred at tteetion node of the BN it is possible to select an action in several
ways. Which action selection method to use is ultimatelyrtioelelers choice. This CGF model supports
the following action selection methods:

e Maximum a posterior (MAP),

e Random draw.

The MAP approach, which is defined in Equation 4, simply gsléte action with the maximuiposte-
rior. The random draw approach selects an action by randomlylsayipe posteriorvalues with respect
to their proportions.

o = arg neg?}fM}p(aMQ) (4)

3.3 Modeling actions

Actions are the means by which a CGF may alter its sfaté\n action is represented here by a set of rules
each consisting of a condition, tlifepart, and a list of effects, thienpart, such that if the condition is
true then the list of effects will execute ultimately resultingstate variable changes. On the other hand, if
the condition idalsethen none of the effects will execute.

In this work subject matter experts have developed hundvédsles modeling the following actions:
attack neutralize negotiate support protect andnothing In addition to the rules governing the effects
of actions, subject matter experts have developed gloled raodeling phenomena such as the Stockholm
syndrome and radicalization. Global rules are also usedttoduce constraints that filters out invalid or
unwanted state variable values.

The conditions, or thé -parts, of the rules are described using Boolean expressidre effects, or the
thenparts, of the rules are described using a function notatioere theset inc anddecfunctions are used
to set, increment and decrement specific state variablesaleor instanceset(I;4, 1) assigns the value 1
to the thetarget actor’s,a;, internal state variabled. Similarly, inc(I;4,1) anddec(I;4, 1) increases and
reduces the same value by 1 respectively. Table 3 illusttagenotation using an example rule that partially
models the effects of thgrotectaction.
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Table 3: Example rule partially modeling the protect action

If Then Description

Lia>0ALic >2ALp > 1A | setdys,2) Update living conditions and geographicpl
Lic >1ALr >0AL; > 1A | setliq,1) dominance of target.

Lk >1ALi >1ALy >0A

ItO > 1

4 SAMPLING BASED ANALYSIS

To reduce the authoring complexity of our CGF modeling apphowe have developed a sampling based
analysis method that can be utilized to gain insight intceitt@n selection and execution mechanisms of the
CGF as well as its real-time performance. The analysis ndethaseful not only during CGF prototyping
and development but potentially also for test and verificapurposes.

The core of our analysis method consists of a Monte-Carledasnulation environment where CGF
implementations, or prototypes, can be embedded and edecilihe simulation environment records the
dynamics of the embedded CGF’s state variables as well #isealictions that the CGF selected and exe-
cuted. Following the Monte-Carlo method any input variabiequired by the CGF, to for instance invoke
the action selection mechanism, are randomly sampled psexgetermined probability distributions.

The pseudo-code of our simulation environment is preseintédgorithm 1. The algorithm basically
consists of two loops where the inner loop randomly samilesarget and bystanderactors to be used
as input to the CGF's action selection algorithm. Note thatd is no need to sample thgtiator role as
it is always played by the CGF itself. When an action is exettun the inner-loop the state variables are
updated, following the rules of the selected action, and¢iselting state variables are copied and stored
in a list for processing by the outer-loop. The outer loopates a probability distribution using the list
generated by the inner-loop. The probability distributisnandomly sampled to create a new state variable
vector to be used in the next simulation cycle. This procesepeated for all simulation cycles.

Given the output of the MC-based simulation environment areseparate the analysis into three parts:
1) action selection analysis, 2) state variable analysid,3 execution time analysis. The action selection
analysis is relevant to gain insight into the behavior ofosicselection mechanism of a CGF. Example
plots illustrating the action selection behavior of a ptgpe CGF in the presence of six other fictitious
actors BFOR Compett Nottovig Popett Popto and Poptre are provided in Figure 2. In Figure 2a the
probabilities of selecting an action for a given target issented over the entire simulation run. In Figure
2b and Figure 2c the probabilities of selecting actions aeegnted at a fixed point in time comparing three
different knowledge levels (0%, 50% and 100%). The knowteliyels are used here to gain insight into
how the action selection mechanism behaves in the preséno&mown information. When the knowledge
level is at 0% all nodes (i.e. state variables) in the BN atenawn, at 50% values has been randomly added
to 50% of the nodes and at 100% values has been added to adl.rieidare 2b represents the CGF’s action
selection behavior for all actions applied to @igets More detailed insights for a specific action, in this
case thattackaction, are provided in Figure 2c.
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Algorithm 1 Monte-Carlo simulation algorithm for data generation.
Require: Initial state variables(2, simulation ticks;7’, and Monte-Carlo iterations per simulation tidk,

SimulationData = empty list of states
Add Q to SimulationData
t=0
while t < T do
MonteCarloData = empty list of states
k=0
while k£ < K do
Q, = state at the end of th&imulationData list
a; = randomly sample target actor
ap = randomly sample bystander actors
a = select action by invoking the;’s behavior module givef;, a; anday
Q. = calculate new state by executinggiven 2, a; anday,
Add Q. to MonteCarloData
k=k+1
end while
Q.1 =randomly samplé/onteCarloData
Add Q4 to SimulationData
t=t+1
end while
return SimulationData
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Figure 2: CGF action selection probability plots. Probabil ities can be plotted over time (Figure 2a) or at specific
points in time (Figure 2b and Figure 2c). In Figure 2b and Figu re 2c results are shown for CGF
knowledge levels 0%, 50% and 100%.
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State variable analysis is relevant when developing astimm also to describe the conditions by which
an action was selected by the CGF. In Figure 3 plots are pedvid illustrate the CGF's knowledge of
another actor’s internal state and relationship variables time. Line plots are used to gain insight into
how state variable values changes throughout the simolatin Probability density plots, which are created

using non-parametric kernel density estimation [9], ao¥isled here to complement the line plot to identify
variation in state variable values.
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Figure 3: Line and probability density plots illustrating t he evolution of internal state and relationship variable

values over time for a given actor.

Execution time analysis is useful to identify potentialuiss with respect to real-time requirements of
the CGF. In Figure 4 box-plots are used to visualize the gi@ttime of action selection as well as action
execution. As mentioned above, the execution time depemdsacture of the BN as well as the knowledge
level of the CGF. To emphasize the impact of knowledge lewélsrespect to execution time, separate box-
plots were generated for each of the previously defined kedyd levels.
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Figure 4: Box-plots visualizing the execution time require d by the CGF to select and execute actions. Results
are shown for CGF knowledge levels 0%, 50% and 100%.

5 CONCLUSIONS

In this paper we have introduced a CGF modeling approacktiaggthe aggregate representation of groups
and organizations in military conflict zones. Our approaitbased on state variables, which have been
identified by subject matter experts, to represent the C@dsvledge and beliefs with respect to the char-
acteristics of groups and organizations. Using the statabhlas a Bayesian network approach was proposed
to model the behavior, or action selection mechanism, c€&& and a rule-based approach was proposed
to model the effects of actions.

Furthermore, given the complexity of CGF modeling, we hatteoduced a sampling based analysis
method used in our work to gain insight into the behavior ofFG@plementations even prior to embedding
them in their intended simulation environment.
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